If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.8x^2+40x=0
a = -0.8; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-0.8)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-0.8}=\frac{-80}{-1.6} =+50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-0.8}=\frac{0}{-1.6} =0 $
| 15x+11=9x+53 | | 6,2·15+6·x/15+x=6,12 | | 30+3x=20 | | 10x+14=3x+21 | | 3x+21=x+39 | | 1/7a=3 | | -10+36=2x10 | | 12*x=12 | | 3x-9+60=-3x-9 | | 5/8x-3/10=-3/8x-4/5 | | (x^2+x+1)(x^2-x+2)-12=0 | | 6y+4-3y=4+2y+2 | | x2+5x+3=x2+6 | | x°+5x+3=x°+6 | | 93+6·x/15+x=6 | | 7x+11=2x+21 | | 93+6·x/15+x=6,12 | | 6m-10-10m=6m-10-10m | | x/9-7=-1 | | N1=t(N2-N3)+N3,N2 | | (n+1)*10-2n/2=-91 | | 4(b-1)=4b-4 | | 7-2n=14 | | 4/3x-7/3=5 | | X+2/3+x+6/5=4 | | 8+6x=15+2(2x-3) | | -2x+5=3x+6 | | -9x/10=-14 | | 7/5+5m/9=98/45 | | -17x=49 | | X^2+13x-450=0 | | 2+7m=66 |